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Abstract

The classical linear thermoacoustic theory is integrated through a numerical calculus with a simple energy conservation model to
allow estimates of the optimal length of thermoacoustic heat exchangers and of the magnitude of the related heat transfer coefficients
between gas and solid walls. This information results from the analysis of the temperature and heat flux density distributions inside a
thermally isolated thermoacoustic stack. The effects of acoustic amplitude, plate spacing, plate thickness and Reynolds number on
the heat transfer characteristics are examined. The results indicate that a net heat exchange between the acoustically oscillating gas
and the solid boundary takes place only within a limited distance from the stack edges. This distance is found to be an increasing function
of the plate spacing in the range (0 6 y0/dj 6 2), becoming constant for y0/dj P 2. The calculated dimensionless convective heat transfer
coefficients, the Nusselt numbers, between gas and solid wall are comparable to those evaluated from classical correlations for steady
laminar flow revised under the ‘‘Time-Average Steady-Flow Equivalent’’ (TASFE) and ‘‘root-mean-square Reynolds number’’ (RMSRe)
models. Numerical results agree with measurements of the heat transfer coefficient found in literature to within 20%.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The influence of sound or vibration on heat transfer has
been the object of many research studies in the recent past
[1] but until the eighties it remained just an academic prob-
lem. Over the last three decades, however, with the fast
development of the thermoacoustic technology, this issue
has become a problem of extraordinary engineering inter-
est. In thermoacoustic engines (refrigerators and prime
movers) intense sound waves (up to 180 dB) constrain fluid
particles to undergo thermodynamic cycles which in tradi-
tional devices are performed by means of pistons, cranks,
compressors, etc. with a great benefit in terms of simplicity,
reliability and costs. Moreover, the employment of non-
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polluting working fluids makes thermoacoustic devices
very attractive from an environmental point of view. A
comprehensive review of the principles of thermoacoustic
heat transport can be found in the tutorial article of Swift
[2].

A thermoacoustic engine comprises four basic elements:
a porous solid medium (stack); ‘‘hot’’ and ‘‘cold’’ heat
exchangers facing both ends of the stack; an electroacoustic
transducer (driver); a rigid and sealed plane wave resona-
tor. As for all heat engines, the overall performance of a
thermoacoustic device strongly depends upon the effective-
ness of the heat exchangers. For small engines, where little
heat transfer powers are required (<10 W), the heat
exchangers usually relay only on thermal conduction. They
can simply consist of thin parallel fins spanning the resona-
tor at the stack ends and made of high thermal conductiv-
ity materials such as copper, silver or aluminium. For
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Nomenclature

a speed of sound (m s�1)
A cross sectional area of the stack open to the

working fluid (m2)
Af area of the fin cross section (m2)
b numerical factor
Br blockage ratio
cP isobaric specific heat of the gas (J kg�1 K�1)
cS specific heat of the plate material (J kg�1 K�1)
D diameter of a circular duct (m)
Dh hydraulic diameter (m)
_e time-averaged energy flux density (W m�2)
fm Rott’s function
h convective heat transfer coefficient (W m�2 K�1)
hj complex thermal function
hm complex viscous function
_hx time-averaged enthalpy flux density along the x

direction (W m�2)
i imaginary unit
k wave number (m�1)
K thermal conductivity of the gas (W m�1 K�1)
Kf thermal conductivity of the fin material

(W m�1 K�1)
Ks thermal conductivity of the plate material

(W m�1 K�1)
l half of the plate thickness (m)
L length of a plate (m)
Lc characteristic length (m)
Lf fin length (m)
Ls stack length (m)
LT thermal entry length (m)
m fin constant (m�1)
M Mach number
Nf number of fins
NuD Nusselt number involving D (or Dh) as charac-

teristic distance
NuL Nusselt number involving L (or Lc) as character-

istic distance
P perimeter of the cross section of a fin (m)
PA amplitude of the dynamic pressure at a pressure

antinode (Pa)
Pm mean pressure (Pa)
Pr Prandtl number
P0 amplitude of the dynamic pressure at the en-

trance of the stack (Pa)
P1 amplitude of the dynamic pressure inside the

stack (Pa)
_Q rate of heat transfer (W)
_Qexp measured values of _Q (W)
_qx time-averaged heat flux density along the x

direction (W m�2)
_qy time-averaged heat flux density along the y

direction (W m�2)

ReD Reynolds number involving D as characteristic
distance

ReL acoustic Reynolds number involving L as char-
acteristic distance

Re1 acoustic Reynolds number involving dm as char-
acteristic distance

Re1,D acoustic Reynolds number involving Dh as char-
acteristic distance

Re1,L acoustic Reynolds number involving Lc as char-
acteristic distance

S total gas solid heat exchange area in the heat ex-
changer (m2)

Sb area of the unfinned base surface (m2)
t time (s)
Tb temperature of the base surface (K)
Tf fin temperature (K)
Tm time-averaged gas temperature (K)
Tsh temperature of the hot end of the stack (K)
Tsm time-averaged temperature of the stack plate (K)
T1 amplitude of the acoustic temperature oscilla-

tions inside the stack (K)
u0 amplitude of the acoustic particle velocity at the

entrance of the stack (m s�1)
u1 amplitude of the acoustic particle velocity inside

the stack (m s�1)
(UA)bf base-to-fin heat transfer coefficient (W K�1)
(UA)exp heat exchanger-stack interelement heat transfer

coefficient (W K�1)
x axial coordinate (m)
x1 particle displacement amplitude (m)
y transverse coordinate perpendicular to the plate

surface (m)
y0 half distance between two plates (m)
z transverse coordinate perpendicular to the x–y

plane (m)

Greek symbols

dj thermal penetration depth of the gas (m)
dm viscous penetration depth of the gas (m)
DLexc heat exchanger length along the x direction (m)
DLs stack length of the experimental apparatus in [9]

(m)
DTexp measured values of the temperature difference

(Tb�Tsh) (K)
Dx computation mesh size along the x direction (m)
Dy computation mesh size along the y direction (m)
gf fin efficiency
j thermal diffusivity of the gas (m2 s�1)
k wavelength of the sound wave (m)
m kinematic viscosity (m2 s�1)
ns mean distance of the stack from the centre of the

resonator (m)
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qm mean density of the gas (kg m�3)
x angular frequency of the sound wave (rad s�1)

Subscripts
1 first order acoustic variable
A acoustic amplitude at a pressure antinode
b base
C characteristic
D diameter
exc exchanger
exp experimental
f fin
h hydraulic
L length
m mean, time averaged

max maximum
P isobaric
r ratio
s solid, stack
sh ‘‘hot’’ side of the stack
sm stack-mean
x longitudinal
y transversal
j thermal
m viscous

Superscripts
bf base-to-fin
exp experimental
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greater thermal loads the finned-tube heat exchangers con-
sisting of round tubes embedded in a matrix of parallel fins
are used [3]. Optimal design depends on the understanding
of the thermo-fluid dynamic processes controlling the heat
transfer between the sound wave and the heat exchangers
at the heat exchanger–stack junctions. Still today this issue
is considered an unsolved problem and a major challenge
in the design of heat exchangers for which established engi-
neering methodologies are still lacking.

Standard design procedures for compact heat exchang-
ers, in fact, generally refer to a steady and unidirectional
flow of fluid while thermoacoustic heat exchangers are
interested by an oscillatory flow with zero mean velocity.
This circumstance has two important implications:

• An excessively long fin (along the longitudinal direction
x of the particle acoustic oscillation) could only lead to
additional thermoviscous losses without incrementing
the surface area available for heat transfer. Conversely,
a much too short fin could be ineffective in transferring
the required thermal load. The optimal length of the
heat exchanger fins should be of the order of the peak-
to-peak acoustic displacement amplitude [2].

• Conventional steady flow heat transfer correlations
cannot be directly applied for the estimation of the
convective heat transfer coefficient (h) between gas and
solid wall of thermoacoustic heat exchangers. Different
approaches are currently proposed to overcome this
limitation.

Swift [4] and Garrett [3] suggest that an approximate
estimation of h can be achieved on the basis of a simple
‘‘boundary layer conduction heat transfer’’ model. The
convective coefficient h should be roughly equal to the ratio
K/dj or, more exactly, to ‘‘some’’ root-mean-square (rms)
value, the rate of heat transfer being expected to be sinusoi-
dal in time:

h � 1ffiffiffi
2
p K

dj
ð1Þ
where K is the thermal conductivity of the gas and
dj ð¼

ffiffiffiffiffiffiffiffiffiffiffi
2j=x

p
Þ is the thermal penetration depth, the dis-

tance through which heat can diffuse in an acoustic cycle
(j and x being respectively the thermal diffusivity and
the angular frequency of the sound wave).

A similar result has been obtained analytically by
Mozurkewich [5] for the case of planar pores on the basis
of a one-dimensional model:

h � b
K
dj

ð2Þ

the numerical factor b resulting a mildly decreasing func-
tion of Prandtl number Pr with b = 0.61 for Pr = 0.68.

Another widely employed approach is the one in which
the results of the standard steady-flow design methodol-
ogy for compact heat exchangers are extended to the ther-
moacoustic case after suitable modifications. The main
method based on this approach is the so called ‘‘Time-
Average Steady-Flow Equivalent’’ (TASFE) approxima-
tion [6]. In this model the relevant steady flow heat transfer
correlations are ‘‘recalibrated’’ for the oscillatory flow by
taking their time average over an acoustic cycle. In the
framework of this model some researchers [7] suggest to
take the time-averaging over half an acoustic period justi-
fying this on the assumption that the heat transfer rate is
independent of the sign of the velocity. Other investigators
[8], on the contrary, hypothesize that, due to the temper-
ature discontinuities existing between the stack and the
heat exchangers [9], the heat transfer rates during the posi-
tive and negative flow component of the cycle are not
equivalent and suggest to introduce a correction factor
for the Reynolds number in the time averaging computa-
tion. Relevant applications of the TASFE model to ther-
moacoustics have been carried out by Mozurkewich [10]
who tested the model predictions based on Zukauska’s
single-tube steady cross flow correlation against experi-
mental data involving heat transfer from geometrically
simple heat exchangers placed immediately near the hot
end of a thermoacoustic stack.
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A similar method is the one proposed by Swift [11]—the
‘‘Root Mean Square Reynolds Number’’ (RMSRe)
model—consisting in the direct substitution of the Rey-
nolds numbers figuring in known steady flow correlations
with their rms values.

The aim of the present work is to obtain through a
numerical investigation information on the optimal length
of thermoacoustic heat exchangers and on the magnitude
of the related convective heat transfer coefficient between
working gas and solid wall. The applied procedure,
inspired to the approach proposed in [5,12] where the
transverse heat transfer in thermoacoustics was analytically
investigated, implements the classical linear thermoacoustic
theory into an energy conservation scheme through a finite
difference technique. The model allows in a very simple way
to take into account the plate edge thermal effects (not
described by the standard linear thermoacoustic theory)
of a thermally isolated parallel-plate stack satisfying the
‘‘short-stack’’ approximation (see next section). As shown
in [13,14], for a thermally isolated stack these edge effects
consist of transverse (normal to the plate surface) time-
averaged temperature gradients and heat fluxes. In steady
state, in fact, energy balance forces the acoustically stimu-
lated hydrodynamic energy flow in the gas to be returned
back by thermal conduction in the solid plates; in the
closed thermal loop that develops the plate edges act as real
heat exchangers. The deriving results, therefore, can be
directly applied to real configurations where two heat
exchangers are generally placed in close proximity of both
ends of the stack. The numerically computed heat transfer
coefficients are compared with the results of classical steady
flow correlations revised under the TASFE and RMSRe
models and with experimental data available in literature.

2. Theory

The standard theory of thermoacoustics [2] is based on
the simplifying assumption that at whatever cross section
of a stack channel the time-averaged temperature of the
gas, Tm, is spatially uniform (not dependent upon the
transverse direction y) and equal to the time-averaged tem-
perature of the adjacent solid surface, Tsm. The only depen-
dence allowed for both gas and plates time-averaged
temperatures is the one along the axial direction x, so pre-
cluding any net heat exchange between them. This hypoth-
esis evidently fails near the stack terminations (or in the
heat exchangers) where a time-averaged transverse heat
diffusion can occur only as an effect of a non-zero time-
averaged transverse temperature gradient.

In order to take into account for time-averaged trans-
verse heat fluxes, in this work the linear thermoacoustic
theory is integrated with a simple energy conservation
model through a numerical calculus. The formulation takes
advantage of the fact that for problems characterized by a
periodic time dependence (like thermoacoustics) the time-
averaged law of conservation of energy for a compressible
viscous fluid is [15]
r � _e ¼ 0 ð3Þ
which implies that the time-averaged energy flux density, _e,
is the proper physical quantity to be considered for apply-
ing conservation of energy locally in the gas channel. For
absolving to this task a finite difference technique is well
suited where the quantitative results of standard linear the-
ory for the components of the time-averaged energy flux
density along the directions of interest may be used. It must
be emphasized that for long enough plates (greater than
the particle displacement length), these expressions are ex-
pected to hold accurately in the central regions of the stack
where end-effects are negligible. Analogously, energy con-
servation can be imposed locally in the solid plates assum-
ing thermal conduction as relevant mechanism of energy
transport.

In order to formulate the basic equations to be used in
the numerical simulation the governing equations of the
linear thermoacoustic theory are briefly summarized for
the simplified case of a parallel-plate stack. These equa-
tions are generally derived under the ‘‘short stack’’ approx-
imation which can be synthesized as follows:

• the acoustic wavelength, k, is much greater than the
stack length, Ls, (k/2p� Ls) so that pressure and veloc-
ity can be retained as constant over the stack;

• the acoustic field is non-significantly perturbed by the
presence of the stack;

• the temperature difference across the stack is much smal-
ler than the mean temperature so that the dependence of
the thermophysical parameters of the gas on the temper-
ature can be neglected.

The time-averaged hydrodynamic energy flow in the gas
along the longitudinal direction x is the same as the time-
averaged hydrodynamic enthalpy flow. If the equation of
state of the gas is taken to be the ideal gas equation it
results:

_hx ¼ qmcP
x
2p

Z 2p=x

0

T 1u1 dt ¼ 1

2
qmcP RefT 1~u1g ð4Þ

where qm is the mean density of the gas, cP is the isobaric
specific heat of the gas, T1 is the first order amplitude of
the temperature oscillation, u1 is the first order amplitude
of the acoustic particle velocity, t is the time, Re{ } signifies
the real part and tilde indicates complex conjugation. To
evaluate this quantity explicit expressions for the periodi-
cally time-varying quantities T1 and u1 inside the stack
are required. If the stack material specific heat, cS, is nota-
bly greater than cP, the following expressions hold for T1

and u1 [11]:

T 1 ¼
1

qmcP
ð1� hjÞP 1�

1

qmx2

dP 1

dx
oT m

ox
ð1� hjÞ� Prð1� hmÞ
ð1� PrÞð1� hmÞ

� �
ð5Þ

u1 ¼
i

xqm

dP 1

dx
ð1� hmÞ ð6Þ
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where

hj ¼
cosh½ð1þ iÞy=dj�
cosh½ð1þ iÞy0=dj�

; hm ¼
cosh½ð1þ iÞy=dm�
cosh½ð1þ iÞy0=dm�

ð7Þ

i being the imaginary unit, P1 the local amplitude of the
dynamic pressure, y0 half distance between two plates
and dm ð¼

ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
Þ the viscous penetration depth (where m

is the kinematical viscosity of the gas).
An approximate expression for the pressure derivative

dP1/dx can be found observing that outside the stack the
dissipative viscous effects can be retained negligible so for
a half-wavelength resonator the harmonic acoustic field
at the entrance of the stack can be described by the follow-
ing expressions:

P 0 ¼ P A sin kns; iu0 ¼ i
P A

qma
cos kns ð8Þ

PA being the amplitude of the dynamic pressure at a pres-
sure antinode, k the wave number (k = 2p/k), a the sound
velocity and ns the mean stack location (distance of the
stack from the centre of the resonator). So, imposing
continuity of volumetric velocity at the entrance of the
stack the following expression is found for the pressure
derivative:

dP 1

dx
¼ u0

Br

qmx
ð1� fmÞ

ð9Þ

where

fm ¼
tanh½ð1þ iÞy0=dm�
½ð1þ iÞy0=dm�

ð10Þ

and where the blockage ratio Br = 1/(1 + l/y0) describes the
porosity of the stack.

Being, by hypothesis, the stack acoustically non-intru-
sive the first of Eqs. (8) can reasonably describe also the
pressure field inside the stack (P1 � P0). Thus, substituting
this equation and Eq. (9) into Eqs. (5) and (6) and these last
in Eq. (4) the following expression is found for the time-
averaged convective enthalpy flux density along the x

direction:

_hx ¼
1

2Br
Im
ð1� ~hmÞð1� hjÞ
ð1� ~f mÞ

" #
P 0u0

� cPqm

2xB2
r ð1� PrÞ

oT m

ox
Im
ð1� hjÞð1� ~hmÞ
j1� fmj2

" #
u2

0 ð11Þ

In the short stack approximation all quantities in this equa-
tion may be assumed independent of the axial coordinate x
except Tm and its derivative; quantities enclosed in square
brackets, on the other hand, depend only on the y coordi-
nate reflecting the transverse variations of the acoustic
velocity u1 and of the oscillatory temperature T1.

The conduction heat transfer along the axial direction
�KoTm/ox is considered to be negligible in comparison
with the hydrodynamic-one [13].
On the opposite hand, the transverse component of the
energy flux density contains only the diffusive term

_qy ¼ �K
oT m

oy
ð12Þ

where _qy is the time-averaged heat flux density along the
transverse direction. This assumption is certainly valid near
the plate surface where the fluid is at rest. Within the linear
theory, however, it may be retained physically plausible
also in regions far from the plate surface. The linearized
equation of continuity, in fact, implies that, being o/ox �
1/k and o/oy � 1/dj, the velocity in the y direction is of
order dj/k smaller than u1 [2]. This entails, as verified
in [16], very small hydrodynamic heat fluxes along the y

direction which can be neglected respect to the diffusive-
ones.

Since thermal conduction is the unique mechanism of
energy transport inside the stack plates the time-averaged
heat flux densities along the relevant directions are simply

_qx ¼ �Ks
oT sm

ox
; _qy ¼ �Ks

oT sm

oy
ð13Þ

where Ks is the thermal conductivity of the plates material
and having taken into account that, being by hypothesis
cS� cP, the solid temperature oscillations are vanishingly
small.

If the ratio of the plate spacing (and of the plate thick-
ness) to the width in the transverse direction is very low (as
in real cases) the energy flow along the z direction (perpen-
dicular to the x–y plane) is negligible and the problem can
be regarded as two-dimensional.

3. Numerical model

The simulation model system is a thermally isolated
stack of parallel plates of length Ls located at position ns

in a half-wavelength gas filled resonator and subjected to
a standing wave as shown in Fig. 1. As a stack is usually
constituted by a set of identical plates, calculation is per-
formed in a single channel of the stack, between a single
pair of parallel plates. This region, enclosed by the dashed
line, is shown magnified in Fig. 1. The simulation domain is
further reduced by symmetry from half a gas duct to half a
plate and is indicated by the light grey area together with
the coordinate system used. The axis parallel to the plates
is the x axis; x = 0 is chosen to be the beginning of the
stack on the left. The y axis is perpendicular to the stack-
plates; y = 0 is chosen to be the midpoint between the
two adjacent plates.

The calculation of the steady-state two-dimensional
time-averaged temperature distribution is performed using
a finite difference methodology. To this end, the computa-
tional domain is subdivided using a rectangular grid. In the
x direction the computation mesh size, Dx, is typically
0.0041Ls while in the y direction the computation mesh
size, Dy, is typically 0.02y0. The set of finite-difference
equations for the unknown quantities Tm(x, y) and



Fig. 1. Schematic illustration of a stack in a resonator and magnified
region of two stack plates. The light grey area indicates the computation
domain.
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Tsm(x, y) is then derived imposing conservation of energy
at each nodal point of the computational grid making
use of Eqs. (11) and (12) for the x and y components of
the energy flux density in the gas and of Eqs. (13) for the
analogues in the solid. Temperature spatial gradients are
discretized in the standard way using first order nodal tem-
perature differences.

The following boundary conditions are imposed:

• nodal lines at y = 0 and y = y0 + l are symmetry lines so

oT m

oy

� �
y¼0

¼ 0;
oT sm

oy

� �
y¼y0þl

¼ 0 ð14Þ

• at the fluid–solid interface (y = y0) the energy flux leav-
ing (or entering) the gas must equal the energy flux
entering (or leaving) the solid wall

K
oT m

oy

� �
y¼y0

¼ KS
oT sm

oy

� �
y¼y0

ð15Þ

• for a thermally isolated stack no heat may leave or enter
the stack diffusively across the plates terminations

oT sm

ox

� �
x¼0

¼ 0;
oT sm

ox

� �
x¼LS

¼ 0 ð16Þ

• as far as the pore ends are concerned, suitable boundary
conditions to apply at such sections for thermal isolation
are available to the knowledge of the authors only in the
work of Mozurkewich [5]. In his work the author sug-
gests the requirement that the axial temperature gradient
be uniform at the pore end and approaches the ‘‘critical
gradient’’ [2] for which the integral of _hx over the section
vanishes. This condition, however, does not preclude the
existence of energy fluxes (both positive and negative)
crossing the end section as only their sum must be zero.
Furthermore, a non-zero uniform gradient cannot
match a zero gradient which is found at the plate termi-
nations according to (14). So, in this work the boundary
condition that no energy may leave or enter the stack
hydrodynamically across the pore ends is imposed sim-
ply setting

_hxðx ¼ 0Þ ¼ 0; _hxðx ¼ LsÞ ¼ 0 ð17Þ
even if this requirement is judged too strong by the
author of [5].

The elements of the coefficient matrix associated to the
resultant system of linear algebraic equations are calcu-
lated by a code developed by the authors (Digital Visual
Fortran 6.0) and the system is solved using the relevant
LAPACK library routines available online at [17]. Once
the time-averaged temperature distribution is known, it
can be substituted in Eqs. (11)–(13) to determine the energy
flux distributions along the x and y directions both in the
gas and in the plate.

The model, relying on the equations of the linear theory,
does not take into account for nonlinear effects (presence
of harmonics greater than the fundamental) or turbulent
oscillatory flow, vortex generation, jetting (which can
become relevant near the stack edges). These effects, on
the other hand, could generate transverse heat transfer
rates greater than the ones that would be obtained uniquely
by thermal conduction, as they are calculated in the present
work (Eq. (12)). Therefore, its applicability should be lim-
ited to acoustic Mach numbers (M = PA/qma2) and acous-
tic Reynolds numbers (Re1 = u1dm/m) below respectively 0.1
and 550, the threshold values above which nonlinearity and
turbulence become not negligible [18].

4. Results and analysis

Numerical simulations are carried out varying PA, y0

and l. The parameters of different runs are listed in Table 1.
In runs 1–18 helium at a mean temperature of 300 K and

at a mean pressure of 10,000 Pa is assumed as working
fluid. It is considered enclosed in a half-wavelength resona-
tor 5.04 m length having a fundamental resonance fre-
quency of 100 Hz. These operating conditions are chosen
to facilitate the comparison with the test cases of Cao
et al. [13] and Ishikawa et al. [14].

In run 19 test gas is air at a mean temperature of 333 K
and at a mean pressure of 101,325 Pa. It is considered
enclosed in a half-wavelength resonator 3.8 m length driven
at a frequency of 44 Hz. These operating conditions are
selected to reproduce the experimental conditions of Brew-
ster et al. [9].

4.1. Comparison with other models

The test of the proposed model predictions against the
results from previous numerical studies is illustrated in



Table 1
Parameters of selected simulations

Run y0/dj l/dj Ls/k ns/k PA/Pm

1 3.39 0.088 0.025 0.131 0.017
2 2 1.271 0.025 0.179 0.01–0.025
3 0.5–4 1.271 0.025 0.179 0.02
4 0.25–0.75 0.339 0.025 0.179 0.025
5 1–1.25 0.53 0.025 0.179 0.025
6 1.5–2 0.805 0.025 0.179 0.025
7 2.5–3 1.271 0.025 0.179 0.025
8 1 0.551 0.025 0.179 0.06
9 1.5 0.805 0.025 0.179 0.06

10 2 1.059 0.025 0.179 0.06
11 2.5 1.271 0.025 0.179 0.06
12 3 1.568 0.025 0.179 0.06
13 1 0.551 0.009 0.198 0.003–0.03
14 1 0.551 0.024 0.198 0.045–0.1
15 2 1.059 0.009 0.198 0.003–0.03
16 2 1.059 0.024 0.198 0.045–0.1
17 3 1.653 0.009 0.198 0.003–0.03
18 3 1.653 0.024 0.198 0.045–0.1
19 1.149 0.575 0.009 0.125 0.005–0.054

In runs 1–18 test gas = helium, mean temperature = 300 K, mean
pressure = 10 kPa, resonator length = k/2 = 5.04 m, resonance fre-
quency = 100 Hz, plate material thermal conductivity = 10 W m�1 K�1.
In run 19 test gas = air, mean temperature = 333 K, mean pressure =
101.325 kPa, resonator length = k/2 = 3.8 m, resonance frequency =
44 Hz, plate material thermal conductivity = 395 W m�1 K�1.
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Fig. 2 where the transverse component of the heat flux den-
sity at the gas–solid interface (y = y0) for run 1 is compared
with run 2 of Cao et al. [13] and run 7 of Ishikawa et al.
[14]. It has to be noted that the parameters l and Ks have
been set to arbitrarily values as in these works plate thick-
ness and material have not been modeled. A quite perfect
overlapping is found in spite of the fact that in these mod-
Fig. 2. Time-averaged heat flux density in the y direction at the plate
surface (y = y0) as a function of the position along the plate. Solid line is
the heat flux density profile computed using the present model (run 1).
Open triangles are numerical data from Ref. [13] (run 2). Open circles are
numerical data from Ref. [14] (run 7). Positive values of _qy imply heat
fluxes entering the plate while negative values of _qy imply heat fluxes
leaving the plate.
els different simulation domains and boundary conditions
are specified. From this it could be argued that the motions
of the fluid particles just outside a pore (modeled in [13,14]
but not in this work) do not significantly affect the gas–
solid heat transfer processes, at least at the pressure ampli-
tudes involved. The simulation reproduces the result that
the transverse heat flux is sharply peaked near the plate
extremities being zero elsewhere. This is a clear evidence
of the fact that a net heat exchange between fluid and solid
takes place only at the plate edges. In particular, j _qy j exhib-
its a monotonic increase reaching a maximum when the
end sections are approached: _qy;max ¼ j _qyðx ¼ 0; y ¼ y0Þj ¼
j _qyðx ¼ Ls; y ¼ y0Þj.

To get insight into the optimum length of the heat
exchanger fins it is necessary to analyze the distance from
the plate end over which a significant non-zero time-aver-
aged heat transfer between solid and gas takes place. The
results of this analysis are shown in Fig. 3 where the trans-
verse component of the heat flux density at the solid
boundary, normalized by _qy;max, is plotted as a function
of the x coordinate normalized by the peak-to-peak parti-
cle displacement amplitude 2jhx1ij = 2jhu1ij/x (where
brackets mean spatial average over the cross section) at
selected PA and y0 values. For plate spacing larger than
the thermal penetration depth (y0/dj > 1) curves corre-
sponding to different PA are almost overlapping implying
that the heat exchange length at the plate ends is linearly
proportional to the particle displacement amplitude. The
proportionality seems to be lost for very short plate spacing
(y0/dj < 1), the transverse heat flux profile being consider-
ably more peaked. The dependence of the heat exchange
length on the plate spacing is further analyzed in Fig. 4
where the distance from the plate edge over which the net
heat transferred between gas and solid amounts to 90%,
95% and 98% of the total heat transferred is reported as
Fig. 3. Time-averaged heat flux density in the y direction at the plate
surface (y = y0) normalized by _qy;max vs. x/2Ihx1iI at selected plate spacing
and acoustic pressure amplitudes (runs 2–3).



Fig. 5. Convective heat transfer coefficient between gas and solid vs.
x/2Ihx1iI at selected plate spacing for PA/Pm = 0.06 (runs 8–12).

Fig. 4. Heat exchange length (distance from the plate edge over which the
net heat transfer between gas and solid amount to 90%, 95% and 98% of
the heat totally transferred) normalized by 2Ihx1iI vs. plate spacing for
PA/Pm = 0.025 (runs 4–7).
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a function of the plate spacing for PA/Pm = 0.025 (Pm

being the mean pressure of the gas). In the graph three
regions are clearly distinguishable:

I for y0/dj < 1 the length available for heat transfer
increases very fast at increasing the plate spacing, still
remaining lower than 2jhx1ij;

II for 1 < y0/dj < 2 the curves exhibit a less marked
growth. In this range for a heat exchange length equal
to 2jhx1ij the net thermal power exchanged between
gas and solid varies from 92% to 99% of the total
power transferred;

III for y0/dj > 2 the curves become flat denoting how the
heat exchange length no more depends upon the plate
spacing. In this range for a heat exchange length
equal to 2jhx1ij the net thermal power exchanged
between gas and solid amounts to 92% of the power
totally transferred.

From the above considerations it follows that, as the
plate spacing of real devices are generally found in range
II, the peak-to-peak particle displacement amplitude can
be conveniently assumed as useful length for the heat
exchangers fins, as generally conjectured on heuristic
grounds. The reduced heat exchange length found for very
short plate spacing (y0/dj < 1) is in agreement with the
findings of Cao et al. [13] who ascribed this behavior to
the improved thermal contact attending tightly spaced fins
which reduces the phase lag between pressure and motion
below the optimal value for which _hx peaks.

Numerical simulations performed at different plate
thickness l (not shown) reveal that this parameter has little
influence on the gas–solid heat exchange area: for a ther-
mally isolated stack the plate simply serves as a duct which
‘‘closes’’ the energy flux path.
In order to compare the predictions of the standard
correlations currently applied for estimation of the heat
transfer coefficient between gas and solid walls of ther-
moacoustic heat exchangers reference is made to the
well-known definition-law of h as reported in standard
textbooks [19]:

h ¼
K

oT m

oy

����
����
y¼y0

jT smðy0Þ � T mj
ð18Þ

which combines the Newton’s law of cooling with the
boundary condition that at the solid surface, being no fluid
motion, energy transfer occurs only by conduction. This
relation allows for estimation of the local convective heat
transfer coefficient once the transverse temperature gra-
dient is known, so it can be conveniently applied in the
proposed numerical calculus. Since in relation (18) Tm rep-
resents the temperature of the bulk fluid in all performed
simulations a plate spacing y0 P dj is chosen and Tm is
evaluated at the centre of the pore: Tm = Tm(y = 0).

In Fig. 5 the dependence of h on the normalized longi-
tudinal coordinate x/2jhx1ij at selected plate spacing is
shown. The local convective coefficient varies with x attain-
ing, at a distance greater than 2jhx1ij, a constant value
which depends, in turn, on the plate spacing; this depen-
dence disappears for y0/dj > 2.5, the curves almost overlap-
ping each other.

Once the local h values are determined a spatially aver-
aged convective heat transfer coefficient can be calculated
as

�h ¼ 1

Lc

Z
Lc

h dx ð19Þ

where overbar indicates spatial averaging and where, as
suggested by the previous analysis, the characteristic length
Lc is chosen equal to the peak-to-peak particle displace-
ment amplitude: Lc = 2jhu1ij/x. Values thus obtained are
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converted to dimensionless average Nusselt numbers, Nu,
through the well-known relation

NuL ¼
�hLc

K
ð20Þ

Results are shown in Fig. 6 where the Nusselt number val-
ues deriving with this procedure (open circles, open trian-
gles and open squares + continuous lines) are reported as
a function of the acoustic Reynolds number at selected
plate spacing. The acoustic Reynolds number is defined
in terms of Lc and of the amplitude of the acoustic velocity
in the bulk fluid outside the boundary layer:

Re1;L ¼
u1Lc

m
ð21Þ

In the calculus procedure the acoustic amplitude at the cen-
tre of the pore, u1(y = 0), is substituted for u1. Since in all
simulations y0 P dm this value should represent a good
approximation of the velocity of the bulk fluid.

The comparison of the simulation data with the predic-
tions of the TASFE and RMSRe models is carried out con-
sidering the standard correlation for steady laminar flow
that allows calculation of the Nusselt number averaged
over a plate of length L [19]:

Nu ¼ 0:664Pr1=3Re1=2
L ð22Þ

ReL being the Reynolds number involving L as character-
istic distance.

To obtain the corresponding TASFE correlation a sinu-
soidally oscillating velocity, u1sin(xt), is assumed and
substituted in Eq. (22). The time average over one-half
cycle of the resulting time-dependent Nusselt number is
then numerically computed:
Fig. 6. Numerical results (open circles, open triangles and open
squares + continuous lines) for the Nusselt number vs. acoustic Reynolds
number (runs 13–18) compared with the predictions of the classical
correlation for steady laminar flow over plates revised under the TASFE
(continuous line) and RMSRe (dashed line) models.
NuL ¼
1

p

Z p=x

0

ð0:644Pr1=3Re1=2
1;L sin xtÞdt

¼ 0:507Pr1=3Re1=2
1;L ð23Þ

The plot of this law vs. the acoustic Reynolds number is
shown in Fig. 6 (solid line).

As far as the RMSRe model is concerned the corre-
sponding correlation is

NuL ¼ 0:664Pr1=3 Re1;Lffiffiffi
2
p

� �1=2

¼ 0:558Pr1=3Re1=2
1;L ð24Þ

The plot of this law vs. the acoustic Reynolds number is
shown in Fig. 6 (dotted line).

The results indicate that at large plate spacing (y0/
dj > 2) the numerically computed values of the Nusselt
number agree quite well with the predictions of the TASFE
and RMSRe models, relatively to the correlation con-
sidered. A quite perfect matching is found between the
RMSRe model and the proposed methodology for y0/
dj = 2; at the highest Reynolds number investigated the
disagreement among the three models is less than 40%.
The numerical calculus results deviate considerably from
those of the other models for narrow plate spacing (y0/
dj < 2). This result is not surprising since Eq. (22) is defined
for external flow conditions so its applicability to thermoa-
coustic heat exchangers should be limited to highly spaced
fins (y0/dj > 2).

In the next subsection, where a comparison with exper-
imental data is proposed, the Hausen correlation [19] is
considered as a first attempt to take into account both
for fin spacing and fin length.

4.2. Comparison with experimental data

The validation of the model against experimental data
has been carried out making reference to the work of Brew-
ster et al. [9] where experimental measurements of the rate
of heat transfer and of the temperature differences between
adjoining ‘‘hot’’ stack-end and ‘‘hot’’ heat exchanger of a
thermoacoustic refrigerator are reported. The heat exchan-
ger is of the parallel-plate conductive type so these data can
be conveniently converted in a form suited to make com-
parison. For the parallel-fin conductive heat exchanger ele-
mentary analysis reported in standard textbooks provide
the following expression for the heat transfer rate between
the fluid and the wall:

_Q ¼
XNf

i¼1

hPLfigfi þ hSb

 !
ðT b � T mÞ ð25Þ

where Nf is the number of fins, P is the perimeter of the
cross section of a fin, Lfi is the length of the ith fin along
the z direction (see Fig. 7), Sb is the area of the unfinned
base surface where fins are attached and Tb is the temper-
ature of the base surface. The fin efficiency, gfi, is defined
as the ratio of the actual heat transfer to the ‘‘maximum’’
heat transfer rate that would occur when both fin and base



Fig. 8. Numerically computed Nusselt number (open circles + line) for
run 19 compared with the experimental measurements of Brewster et al. [9]
(full circles) and the predictions of the Hausen correlation revised under
the TASFE (continuous line) and RMSRe (dashed line) models.

Fig. 7. Sketch of the conductive heat exchanger with indication of the temperatures.
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surface are at the same base temperature. Analysis of
straight fins with adiabatic centerline provide the following
expression for gfi:

gfi ¼
tanhðmLfi=2Þ

mLfi=2
; m ¼

ffiffiffiffiffiffiffiffiffiffiffi
hP

Af Kf

s
ð26Þ

where Af is the area of a fin cross section and Kf is the ther-
mal conductivity of the fin material.

In Eq. (25) the temperature differences (Tb � Tm) are
involved while in [9] the experimentally measured values

DT exp ¼ ðT b � T shÞ ð27Þ
are available, Tsh being the temperature of the hot end of
the stack facing the hot heat exchanger (see Fig. 7). The
simple calculation outlined in the Appendix, however,
allows to convert the measured values (27) into the dif-
ferences (Tb � Tm) required for substitution in (25); the
conversion formula is

ðT b�T mÞ¼ _Qexp

DT exp

_Qexp

� 1

ðUAÞbf

" #
4ju1jy0

pxDLexcdj

� �
þ 1

ðUAÞbf

( )

ð28Þ

where _Qexp are the experimental values of the rate of heat
transfer, DLexc is the length of the heat exchanger fins along
the longitudinal direction x and where 1/(UA)bf, the ther-
mal resistance of the base-to-fin path, has been estimated
in [9] to be �1/12 K W�1.

In this way, the values of the convective heat transfer
coefficient are those which solve Eq. (25) in correspondence
of each couple of measured values _Qexp, DTexp.

The h data thus obtained are converted to non-dimen-
sional Nusselt number based on the hydraulic diameter
of the pore Dh (=4y0)

NuD ¼
�hDh

K
ð29Þ
Results are plotted in Fig. 8 (full circles), along with the
predictions of the numerical model (open circles + contin-
uous line), as a function of the acoustic Reynolds number

Re1;D ¼
u1Dh

m
ð30Þ

In the simulations the stack and the heat exchangers of the
experimental apparatus (of length respectively DLs and
DLexc) are modeled by a thermally isolated stack of length
Ls = DLs + 2DLexc, as in the proposed model the role of the
heat exchangers is played by the stack edges. The convec-
tive heat transfer coefficient, moreover, is calculated aver-
aging the local h values over the fixed length DLexc.

In order to test the predictions of the TASFE and
RMSRe models the Hausen correlation [19] for laminar
flow in the entry region of ducts is considered:
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NuD ¼ 3:66þ 0:0668ðD=LT ÞPrReD

1þ 0:04½ðD=LT ÞPrReD�2=3
ð31Þ

D being the diameter of the circular duct, LT the thermal
entry length and ReD the Reynolds number involving D

as characteristic distance. This correlation is preferred to
Eq. (22) as for the involved geometry and experimental
conditions it results y0/dj � 1, so the fins cannot be consid-
ered as highly spaced.

To find the corresponding TASFE correlation the time-
average of Eq. (31) over one-half the acoustic period is
computed

NuD ¼
1

p

Z p=x

0

3:66þ 0:0668ðDh=DLexcÞPrRe1;D sinxt

1þ 0:04½ðDh=DLexcÞPrRe1;D sinxt�2=3

( )
dt

ð32Þ
The results of the numerical integration can be parameter-
ized in the investigated range (200 6 Re1,D 6 2200) as

NuD ¼ 2:8731þ 0:11432ðRe1;DÞ1=2 þ 0:00035ðRe1;DÞ ð33Þ
and are represented in Fig. 8 by the continuous line.

In the same figure the predictions of Eq. (31) revised
under the RMSRe model (dashed line)

NuD ¼ 3:66þ 0:0668ðDh=DLexcÞPrðRe1;D=
ffiffiffi
2
p
Þ

1þ 0:04½ðDh=DLexcÞPrðRe1;D=
ffiffiffi
2
p
Þ�2=3

ð34Þ

are also shown. In plotting Eqs. (32) and (34) the thermal
entry length, LT, has been identified with the heat exchan-
ger fin length DLexc.

The results of the numerical model seem to agree better
than the TASFE and RMSRe models predictions based on
Eq. (31) with the experimental data of Brewster et al. The
mean deviations from the measured NuD values are respec-
tively 20% for the numerical model, 32% for the TASFE
model and 39% for the RMSRe model, even if the last
two models seem to work better at low acoustic Reynolds
numbers (Re1,D < 700) where the deviations from the
experimental data reduce respectively to 6 and 7%. For
higher Reynolds numbers the TASFE- and RMSRe-modi-
fied Hausen correlation overestimate both the measured
and numerical data.

In evaluating these results some remarks have to be
pointed out:

• the stack used in [9] is a ceramic lattice of parallel square
ducts so its performance could be different from that of
a parallel-plate stack (used in the numerical simulations)
[20];

• at the involved acoustic Reynolds numbers the peak-to-
peak particle displacement amplitude is always greater
than the heat exchanger length so the procedure of aver-
aging the local h values over the fixed length DLexc could
be not appropriate;

• the conversion formula (28) relies on the results of the
‘‘complete heat-exchange’’ theory [9] and of the ‘‘ther-
mal boundary-layer’’ theory [4] so its correctness is sub-
ordinate to the validity of these theories;
• In Eqs. (32) and (34) the identification of the thermal
entry length LT with the heat exchanger length DLexc

is arbitrary.

5. Conclusions

In this paper a numerical calculus scheme has been
developed by implementing the simplified linear thermo-
acoustic theory—the short stack approximation–into a sim-
ple energy conservation model through a finite difference
methodology. The model allows to enquire on the optimal
length of thermoacoustic heat exchangers and on the mag-
nitude of the related heat transfer coefficients between gas
and solid walls. Results show that for plate spacing falling
in the range 1 < y0/dj < 2 the peak-to-peak particle dis-
placement amplitude can be conveniently assumed as opti-
mal length of heat exchangers fins; this length decreases
significantly at short plate spacing (y0/dj < 1), a circum-
stance that should be taken into account in the design
procedures.

The calculated dimensionless convective heat transfer
coefficients, the Nusselt numbers, between gas and solid
wall are comparable to those evaluated from classical cor-
relations for steady laminar flow revised under the TASFE
and RMSRe models. Precisely, the comparative analysis
of the results suggest that at large plate spacing (y0/
dj > 2) correlations for external flow conditions can be
usefully applied while at short plate spacing (y0/dj < 2)
correlations which take into account the effect of plate
spacing are more suited. The predictions of the numerical
model are found to be within 20% the experimental data
of Brewster et al. [9]; this deviation is lower than those
arising from the TASFE- and RMSRe-modified Hausen
correlations. Indeed, the identification of the thermal entry
length with the heat exchanger fin length in Eqs. (32) and
(34) may result quite arbitrary and needs more analysis.
At this stage, however, it constitutes simply a first attempt
to take into account both for fin spacing and fin length in
the evaluation of the convective heat transfer coefficients
between gas and solid wall of tightly spaced heat exchan-
ger fins.
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Appendix

For application of Eq. (25) it was noted earlier (Section
4.2) that the experimentally measured temperature differ-
ences (Tb � Tsh) must be converted into the differences
(Tb � Tm). A procedure for carrying this out, based on
the analysis of the series of heat paths by which the heat
is transferred from the base of the heat exchanger to the
stack, is outlined in this appendix.
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From the measured values of _Q and (Tb � Tsh), the heat
exchanger-stack interelement heat transfer coefficient can
be calculated from

_Qexp ¼ ðUAÞexpDT exp ðA1Þ

On the other hand, from a simplified analysis based on the
heat conduction equation the authors of [9] have derived an
expression for the thermal resistance of the base-to-fin path
1/(UA)bf; for the involved geometry it resulted
(UA)bf = 12 W K�1. In this way, the rate of heat transfer
can be also expressed as

_Q ¼ ðUAÞbfðT b � T f Þ ðA2Þ
where Tf is the temperature of the fins at the centre of the
resonator. Combining Eqs. (A1) and (A2) it follows

_Q ¼ 1

ðUAÞexp �
1

ðUAÞbf

" #�1

ðT f � T shÞ ðA3Þ

The same temperature difference appears in the expression
of _Q that the authors of [9] have derived on the basis of the
‘‘complete heat-exchanger’’ theory

_Q ¼ 2

p
AcP qmju1jðT f � T shÞ ðA4Þ

where A is the cross sectional area of the stack open to the
working fluid. For the details of the derivation of this for-
mula the reader is addressed to [9]. This expression can be
compared to the one put forward by Swift on the basis of
the ‘‘thermal boundary-layer’’ theory [4]

_Q ¼ KS
oT m

oy

����
y0

� KS
ðT f � T mÞ

dj
¼ KADLexc

y0dj
ðT f � T mÞ ðA5Þ

where S is the total gas–solid surface area available for heat
transfer in the heat exchanger and having taken into
account that for rectangular geometries S = DLexcA/y0.
Equating this equation to Eq. (A4) and rearranging

ðT f � T shÞ ¼
pxDLexcdj

4ju1jy0

ðT f � T mÞ ðA6Þ

that, substituted into Eq. (A3) yields

_Q ¼ 1

ðUAÞexp �
1

ðUAÞbf

" #�1
pxDLexcdj

4ju1jy0

� �
ðT f � T mÞ ðA7Þ

Finally, combining this equation with Eq. (A2) and
rearranging

ðT b�T mÞ¼ _Q
1

ðUAÞexp�
1

ðUAÞbf

" #
4ju1jy0

pxDLexcdj

� �
þ 1

ðUAÞbf

( )

ðA8Þ
which is the same of Eq. (28) if _Qexp and _Qexp=DT exp are
substituted respectively for _Q and (UA)exp.
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